Copied to
clipboard

G = C42.58Q8order 128 = 27

18th non-split extension by C42 of Q8 acting via Q8/C4=C2

p-group, metabelian, nilpotent (class 3), monomial

Aliases: C42.58Q8, C86(C4⋊C4), (C4×C8)⋊21C4, C42(C4.Q8), C4.1(C4⋊Q8), (C2×C8).53Q8, (C2×C8).274D4, C2.1(C85D4), C2.1(C83Q8), (C2×C4).71SD16, C429C4.6C2, C42.323(C2×C4), C23.753(C2×D4), (C22×C4).577D4, C22.27(C4⋊Q8), C2.5(C429C4), C22.52(C2×SD16), C22.27(C41D4), (C22×C8).563C22, (C22×C4).1343C23, (C2×C42).1059C22, (C2×C4×C8).54C2, C4.33(C2×C4⋊C4), C2.8(C2×C4.Q8), (C2×C8).233(C2×C4), (C2×C4).728(C2×D4), (C2×C4).193(C2×Q8), (C2×C4.Q8).13C2, (C2×C4).131(C4⋊C4), (C2×C4⋊C4).47C22, C22.102(C2×C4⋊C4), (C2×C4).542(C22×C4), SmallGroup(128,576)

Series: Derived Chief Lower central Upper central Jennings

C1C2×C4 — C42.58Q8
C1C2C22C23C22×C4C2×C42C2×C4×C8 — C42.58Q8
C1C2C2×C4 — C42.58Q8
C1C23C2×C42 — C42.58Q8
C1C2C2C22×C4 — C42.58Q8

Generators and relations for C42.58Q8
 G = < a,b,c,d | a4=b4=1, c4=b2, d2=b-1c2, ab=ba, ac=ca, dad-1=a-1, bc=cb, dbd-1=b-1, dcd-1=c3 >

Subgroups: 252 in 140 conjugacy classes, 92 normal (12 characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C2×C4, C2×C4, C2×C4, C23, C42, C4⋊C4, C2×C8, C22×C4, C22×C4, C22×C4, C4×C8, C4.Q8, C2×C42, C2×C4⋊C4, C2×C4⋊C4, C22×C8, C429C4, C2×C4×C8, C2×C4.Q8, C42.58Q8
Quotients: C1, C2, C4, C22, C2×C4, D4, Q8, C23, C4⋊C4, SD16, C22×C4, C2×D4, C2×Q8, C4.Q8, C2×C4⋊C4, C41D4, C4⋊Q8, C2×SD16, C429C4, C2×C4.Q8, C85D4, C83Q8, C42.58Q8

Smallest permutation representation of C42.58Q8
Regular action on 128 points
Generators in S128
(1 100 61 29)(2 101 62 30)(3 102 63 31)(4 103 64 32)(5 104 57 25)(6 97 58 26)(7 98 59 27)(8 99 60 28)(9 91 83 127)(10 92 84 128)(11 93 85 121)(12 94 86 122)(13 95 87 123)(14 96 88 124)(15 89 81 125)(16 90 82 126)(17 56 72 80)(18 49 65 73)(19 50 66 74)(20 51 67 75)(21 52 68 76)(22 53 69 77)(23 54 70 78)(24 55 71 79)(33 41 110 117)(34 42 111 118)(35 43 112 119)(36 44 105 120)(37 45 106 113)(38 46 107 114)(39 47 108 115)(40 48 109 116)
(1 49 5 53)(2 50 6 54)(3 51 7 55)(4 52 8 56)(9 117 13 113)(10 118 14 114)(11 119 15 115)(12 120 16 116)(17 32 21 28)(18 25 22 29)(19 26 23 30)(20 27 24 31)(33 95 37 91)(34 96 38 92)(35 89 39 93)(36 90 40 94)(41 87 45 83)(42 88 46 84)(43 81 47 85)(44 82 48 86)(57 77 61 73)(58 78 62 74)(59 79 63 75)(60 80 64 76)(65 104 69 100)(66 97 70 101)(67 98 71 102)(68 99 72 103)(105 126 109 122)(106 127 110 123)(107 128 111 124)(108 121 112 125)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)
(1 108 55 127)(2 111 56 122)(3 106 49 125)(4 109 50 128)(5 112 51 123)(6 107 52 126)(7 110 53 121)(8 105 54 124)(9 29 115 24)(10 32 116 19)(11 27 117 22)(12 30 118 17)(13 25 119 20)(14 28 120 23)(15 31 113 18)(16 26 114 21)(33 77 93 59)(34 80 94 62)(35 75 95 57)(36 78 96 60)(37 73 89 63)(38 76 90 58)(39 79 91 61)(40 74 92 64)(41 69 85 98)(42 72 86 101)(43 67 87 104)(44 70 88 99)(45 65 81 102)(46 68 82 97)(47 71 83 100)(48 66 84 103)

G:=sub<Sym(128)| (1,100,61,29)(2,101,62,30)(3,102,63,31)(4,103,64,32)(5,104,57,25)(6,97,58,26)(7,98,59,27)(8,99,60,28)(9,91,83,127)(10,92,84,128)(11,93,85,121)(12,94,86,122)(13,95,87,123)(14,96,88,124)(15,89,81,125)(16,90,82,126)(17,56,72,80)(18,49,65,73)(19,50,66,74)(20,51,67,75)(21,52,68,76)(22,53,69,77)(23,54,70,78)(24,55,71,79)(33,41,110,117)(34,42,111,118)(35,43,112,119)(36,44,105,120)(37,45,106,113)(38,46,107,114)(39,47,108,115)(40,48,109,116), (1,49,5,53)(2,50,6,54)(3,51,7,55)(4,52,8,56)(9,117,13,113)(10,118,14,114)(11,119,15,115)(12,120,16,116)(17,32,21,28)(18,25,22,29)(19,26,23,30)(20,27,24,31)(33,95,37,91)(34,96,38,92)(35,89,39,93)(36,90,40,94)(41,87,45,83)(42,88,46,84)(43,81,47,85)(44,82,48,86)(57,77,61,73)(58,78,62,74)(59,79,63,75)(60,80,64,76)(65,104,69,100)(66,97,70,101)(67,98,71,102)(68,99,72,103)(105,126,109,122)(106,127,110,123)(107,128,111,124)(108,121,112,125), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,108,55,127)(2,111,56,122)(3,106,49,125)(4,109,50,128)(5,112,51,123)(6,107,52,126)(7,110,53,121)(8,105,54,124)(9,29,115,24)(10,32,116,19)(11,27,117,22)(12,30,118,17)(13,25,119,20)(14,28,120,23)(15,31,113,18)(16,26,114,21)(33,77,93,59)(34,80,94,62)(35,75,95,57)(36,78,96,60)(37,73,89,63)(38,76,90,58)(39,79,91,61)(40,74,92,64)(41,69,85,98)(42,72,86,101)(43,67,87,104)(44,70,88,99)(45,65,81,102)(46,68,82,97)(47,71,83,100)(48,66,84,103)>;

G:=Group( (1,100,61,29)(2,101,62,30)(3,102,63,31)(4,103,64,32)(5,104,57,25)(6,97,58,26)(7,98,59,27)(8,99,60,28)(9,91,83,127)(10,92,84,128)(11,93,85,121)(12,94,86,122)(13,95,87,123)(14,96,88,124)(15,89,81,125)(16,90,82,126)(17,56,72,80)(18,49,65,73)(19,50,66,74)(20,51,67,75)(21,52,68,76)(22,53,69,77)(23,54,70,78)(24,55,71,79)(33,41,110,117)(34,42,111,118)(35,43,112,119)(36,44,105,120)(37,45,106,113)(38,46,107,114)(39,47,108,115)(40,48,109,116), (1,49,5,53)(2,50,6,54)(3,51,7,55)(4,52,8,56)(9,117,13,113)(10,118,14,114)(11,119,15,115)(12,120,16,116)(17,32,21,28)(18,25,22,29)(19,26,23,30)(20,27,24,31)(33,95,37,91)(34,96,38,92)(35,89,39,93)(36,90,40,94)(41,87,45,83)(42,88,46,84)(43,81,47,85)(44,82,48,86)(57,77,61,73)(58,78,62,74)(59,79,63,75)(60,80,64,76)(65,104,69,100)(66,97,70,101)(67,98,71,102)(68,99,72,103)(105,126,109,122)(106,127,110,123)(107,128,111,124)(108,121,112,125), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,108,55,127)(2,111,56,122)(3,106,49,125)(4,109,50,128)(5,112,51,123)(6,107,52,126)(7,110,53,121)(8,105,54,124)(9,29,115,24)(10,32,116,19)(11,27,117,22)(12,30,118,17)(13,25,119,20)(14,28,120,23)(15,31,113,18)(16,26,114,21)(33,77,93,59)(34,80,94,62)(35,75,95,57)(36,78,96,60)(37,73,89,63)(38,76,90,58)(39,79,91,61)(40,74,92,64)(41,69,85,98)(42,72,86,101)(43,67,87,104)(44,70,88,99)(45,65,81,102)(46,68,82,97)(47,71,83,100)(48,66,84,103) );

G=PermutationGroup([[(1,100,61,29),(2,101,62,30),(3,102,63,31),(4,103,64,32),(5,104,57,25),(6,97,58,26),(7,98,59,27),(8,99,60,28),(9,91,83,127),(10,92,84,128),(11,93,85,121),(12,94,86,122),(13,95,87,123),(14,96,88,124),(15,89,81,125),(16,90,82,126),(17,56,72,80),(18,49,65,73),(19,50,66,74),(20,51,67,75),(21,52,68,76),(22,53,69,77),(23,54,70,78),(24,55,71,79),(33,41,110,117),(34,42,111,118),(35,43,112,119),(36,44,105,120),(37,45,106,113),(38,46,107,114),(39,47,108,115),(40,48,109,116)], [(1,49,5,53),(2,50,6,54),(3,51,7,55),(4,52,8,56),(9,117,13,113),(10,118,14,114),(11,119,15,115),(12,120,16,116),(17,32,21,28),(18,25,22,29),(19,26,23,30),(20,27,24,31),(33,95,37,91),(34,96,38,92),(35,89,39,93),(36,90,40,94),(41,87,45,83),(42,88,46,84),(43,81,47,85),(44,82,48,86),(57,77,61,73),(58,78,62,74),(59,79,63,75),(60,80,64,76),(65,104,69,100),(66,97,70,101),(67,98,71,102),(68,99,72,103),(105,126,109,122),(106,127,110,123),(107,128,111,124),(108,121,112,125)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128)], [(1,108,55,127),(2,111,56,122),(3,106,49,125),(4,109,50,128),(5,112,51,123),(6,107,52,126),(7,110,53,121),(8,105,54,124),(9,29,115,24),(10,32,116,19),(11,27,117,22),(12,30,118,17),(13,25,119,20),(14,28,120,23),(15,31,113,18),(16,26,114,21),(33,77,93,59),(34,80,94,62),(35,75,95,57),(36,78,96,60),(37,73,89,63),(38,76,90,58),(39,79,91,61),(40,74,92,64),(41,69,85,98),(42,72,86,101),(43,67,87,104),(44,70,88,99),(45,65,81,102),(46,68,82,97),(47,71,83,100),(48,66,84,103)]])

44 conjugacy classes

class 1 2A···2G4A···4L4M···4T8A···8P
order12···24···44···48···8
size11···12···28···82···2

44 irreducible representations

dim1111122222
type++++-+-+
imageC1C2C2C2C4Q8D4Q8D4SD16
kernelC42.58Q8C429C4C2×C4×C8C2×C4.Q8C4×C8C42C2×C8C2×C8C22×C4C2×C4
# reps12148244216

Matrix representation of C42.58Q8 in GL5(𝔽17)

10000
016000
001600
0001615
00011
,
160000
016200
016100
000160
000016
,
160000
00700
05700
000160
000016
,
130000
06300
0161100
00093
00018

G:=sub<GL(5,GF(17))| [1,0,0,0,0,0,16,0,0,0,0,0,16,0,0,0,0,0,16,1,0,0,0,15,1],[16,0,0,0,0,0,16,16,0,0,0,2,1,0,0,0,0,0,16,0,0,0,0,0,16],[16,0,0,0,0,0,0,5,0,0,0,7,7,0,0,0,0,0,16,0,0,0,0,0,16],[13,0,0,0,0,0,6,16,0,0,0,3,11,0,0,0,0,0,9,1,0,0,0,3,8] >;

C42.58Q8 in GAP, Magma, Sage, TeX

C_4^2._{58}Q_8
% in TeX

G:=Group("C4^2.58Q8");
// GroupNames label

G:=SmallGroup(128,576);
// by ID

G=gap.SmallGroup(128,576);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,2,-2,224,141,64,422,100,2019,248]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=1,c^4=b^2,d^2=b^-1*c^2,a*b=b*a,a*c=c*a,d*a*d^-1=a^-1,b*c=c*b,d*b*d^-1=b^-1,d*c*d^-1=c^3>;
// generators/relations

׿
×
𝔽